
Live reload with replay semantics
Frederic Kettelhoit
Recurse Center

fred@fkettelhoit.com

Abstract—We present a solution for live reloading
that avoids stale state through replay semantics:
no matter when code is reloaded, the live system
state can always be reproduced by replaying the
session from the start using only the current code
version. Our approach caches side effects while
replaying pure computation, ensuring the source
code remains the single source of truth. We for-
malize replay semantics and demonstrate how to
implement live reloading with these guarantees in
languages that separate pure computation from
effects.

Introduction1

Most modern software is developed by writing code,
running and testing it, then stopping execution to
modify the source files, in a continuous write-run-
stop cycle. Minimizing the time it takes to run code
can greatly improve development speed, but even
with fast compilation, rebuilding state during each
cycle can significantly impact iteration speed. This is
especially true for interactive programs that depend
on substantial user input.

Live reloading (sometimes known as hot reloading) code
is an alternative approach that keeps some or all of the
program state alive between modifications. This allows
the modified code to reuse previously computed results
or input without restarting the program. Existing
approaches generally fall into two categories:

• Some programming languages provide support for
live reloading on a language level, for example
Lisp REPLs [1], Smalltalk images combining state
and code [2], and Erlang hot swapping [3], [4].

• Some programming languages provide libraries
for live reloading in specific situations, such as in
game engines [5] or in web development [6]. These
approaches limit what is reloaded and when a
reload happens (each frame, each time a page is
refreshed, etc.).

1I thank Florian Ragwitz and David Allen Feil for helpful
discussions on this topic at the Recurse Center.

Given that fast feedback cycles are generally desir-
able when developing software, one might ask why
most languages only provide limited support for live
reloading in the form of libraries and frameworks, if
they provide support for it at all. Why do we not see
more adoption of live reloading at the language level?
Going further, why are write-run-stop cycles still the
norm in software development? Why can’t we go from
empty source file to fully working software without
ever stopping a running program?

Despite the desirability of fast feedback cycles, most
languages provide only limited live reloading support.
The core problem is stale state: when new code versions
modify existing functions, the live system may contain
data impossible to generate with the current code
version. This breaks the fundamental principle that
source code should be the single source of truth.

This is the case for many Lisp systems, for example,
which often de-emphasize source files in favor of
REPL-driven development. While experienced Lisp
programmers often have a good mental model of when
the current live session may end up containing stale
state (and thus require a restart), novice programmers
can quickly end up in a state that works in the current
session. Such states often break when the program
is restarted due to missing function definitions or
definitions loaded in the wrong order.

Consider this example where a function increments
and prints a counter:

let n = 0
function print_n():

while true:
n += 1
print!(n)

If we live reload a version that increments by 2 instead
of 1, the behavior depends on when reloading occurs.
If n is odd at reload time, the new version will print
odd numbers. The live system could thus end up with



stale state, because an odd number as a value of n
would not be reachable by restarting the system with
the new version of the program.

Traditionally, there have been two approaches to deal
with this issue at the language level:

• Stale state is considered to be an acceptable
price to pay for live reloading and it is up to
the user to restart the system at appropriate
times, flushing out the old state. This is the route
taken by most systems that support live reloading
for development purposes [1], [6]. The burden of
deciding when to restart and flush out old state
is shifted onto the user.

• State must be explicitly migrated whenever a
new program version is loaded into the system.
In the above example, this might be done by
multiplying n by 2 or picking the nearest even
number. This is the route taken by many systems
that support live reloading in production settings,
known as Dynamic Software Updating (DSU) [7],
[8], [9]. Deciding the validity of a migration or
deriving a state migration function automatically
is undecidable in the general case [10], which limits
DSU to specific situations.

Unfortunately, neither of these approaches makes it
feasible to incrementally develop a program without
ever having to stop the live system. Ignoring stale
state leads to defensive restarts, while requiring explicit
state migrations adds a considerable burden that is
not justified for development purposes where state can
often be safely thrown away.

We present an alternative approach, which requires no
state migration but nevertheless guarantees that live
reloading never leads to a stale state. We show that our
approach exhibits replay semantics, guaranteeing that
no matter when and what code is reloaded, the live
state of the system can always be reached by replaying
the live session from the start, by using only the most
recently loaded version of the code.

We start by establishing terminology and then give
a formal definition of replay semantics. We further
present an implementation strategy that leads to a
concrete algorithm and finally discuss the limitations
of our approach.

Terminology
To ensure clarity, we establish the following terminol-
ogy used throughout this paper:

• Effect: A side-effecting operation that interacts
with the outside world, such as I/O operations.
We use “effect” and “side effect” interchangeably.

• Effect signature: The complete specification
of an effect, including both the operation
name and its arguments (e.g., read_num!() or
print!("hello")).

• Effect sequence: An ordered list of effect signa-
tures observed during program execution.

• Live reloading: The process of loading new code
into a running system without stopping it.

• Program version: A complete snapshot of the
source code at a particular point in time. When
we say “the new version” we mean the version
being loaded during a live reload.

• Stale state: Live system state that cannot be
reproduced by restarting with the current program
version.

Formal definition
We define replay semantics in terms of program
executions and their observable effect sequences, noting
a similarity to the definition of a valid state mapping
in [10].

Let a program P be a complete source file that can
be executed independently. Let an effect sequence E
be an ordered list of side effects with their arguments,
such as [read_num!(), print!(1), print!(2)].
We say that two effect signatures are equivalent if they
have the same effect name and arguments.

Definition (Replay Semantics): A live reloading
system exhibits replay semantics if, for any program
P and its reloaded version P’, the following property
holds:

If executing P’ in the live system after reloading results
in a final state S, then there exists some effect sequence
E such that executing P’ from an empty initial state
with effect sequence E would also result in state S.

In other words, the live state after any reload is
always reachable by restarting the current program
version with some appropriate sequence effects. This
guarantees that the source code remains the single
source of truth, as the live state never depends on
code that doesn’t exist in the current version.



Intuition: Replay semantics ensure that “time travel”
is always possible - you can always achieve the current
live state by going back to the beginning and replaying
with the new code version, using only the effects that
were observed during the live session.

Implementation Strategy
Based on the observation that side effects cannot be
replayed but pure computation can, we show how a
language implementation can support replay semantics
in practice. As a prerequisite, we assume that built-in
side effects are syntactically marked in the language
using the suffix !, such as print!("hello") or
read_num!(). In contrast, regular functions (either
user-defined or built-in) are written without a ! at the
end. We do not require a user-defined function that
uses side effects to be suffixed with !, because it will
be evident from its definition (and of the functions it
is calling) whether the whole function is pure or not.
While our implementation lends itself well to languages
with algebraic effects, our approach requires neither
an effect system nor effect handlers [11].

As an example, let us return to the program that
increments numbers and prints them out in a loop, but
change it slightly so that the initial value is dependent
on user input:

let n = read_num!()
function print_n():

while true:
n += 1
print!(n)

print_n()

The key insight leading to replay semantics is extremely
simple: A live reloading system will exhibit replay
semantics if it caches side effects and then replays
the newly loaded program version using the cached
effects. Intuitively, caching side effects (and loading a
new version of the pure computation) is equivalent
to caching the interaction with the outside world.
This means live reloading becomes equivalent to going
back in time and restarting the program with the
new version, as if the previous version of the pure
computation had never existed.

In the above example, loading a new program version
that increments n by 2 instead of 1 would replay the
entire program from the start. But depending on how
caching is implemented, the read_num!() effect would

be cached, guaranteeing that if the user input was an
even number, the program will only print out even
numbers after loading the new version.

Language support
Before discussing how and where to implement caching,
let us note a few things. First of all, we are concerned
with reloading entire programs. Reloading smaller
units (such as modules or functions) is an interesting
challenge, but out of scope for the approach discussed
here. Second, we can immediately see that by allowing
reloading arbitrarily changed programs, a new version
could either have side effects that the previous version
did not have, or it could omit some side effects that
were part of the original version, or rely on the same
side effects but in a different order. In other words,
there is no guarantee that the new version of a program
interacts with the outside world in the same way as the
previous version. How caching behaves in the presence
of changed effect sequences is the central decision that
a live reloading system with replay semantics has to
make and will be the focus of what follows.

Let us first consider the question of how caching should
be exposed in the language. There are 3 options:

1. What is cached is decided by the live system and
cannot be controlled by a user from within the
language.

2. What is cached and how a cache is built is the
responsibility of a user, who can build caching
abstractions in the language.

3. What is cached is decided by the user, but
caching is provided by the language and is not
observable in the absence of reloads.

It would be tempting to hide the decision of what to
cache from users (option 1), but knowing which effects
can and should be cached depends on how a particular
effect interacts with the outside world. In our example,
it seems sensible to cache the read_num!() effect but
to ignore caching for print!(). However, there are
cases where the same effect might require caching in
some programs but not in others.

The other extreme, which would be to leave the
implementation of caching up to users (option 2), seems
appealing from a language design perspective. However,
this makes replay semantics impossible, because state
in the language could depend on whether something
has been cached or even on the size of the cache. This
effectively makes older program versions potentially



observable after a reload. Restarting a program would
then be different from replaying it after a live reload.

Our approach thus relies on the last option, which
strikes a balance between exposing too much and
too little to users. We will mark effects that are
cached between reloads with a prefix @ and note that
these annotations only play a role during live reloads.
Whenever an effect is supposed to be cached within
the execution of a single version, it needs to be cached
by storing the data explicitly in some data structure,
with no repercussions for the live reload system.

Cache invalidation
A live reload system that uses caching to guarantee
replay semantics needs to choose when and how to
invalidate the cache of effects. As an example, let us
consider the following program fragment, which uses
the read_num!() side effect 10 times to wait for user
input and caches these side effects between reloads:

// v0
let guesses = []
for i in 0..10:

guesses.push(@read_num!())

Let us assume that a new version is loaded into the
system, which calls read_num!() 9 times instead of
10:

// v1
let guesses = []
for i in 0..9:

guesses.push(@read_num!())

Now another version is loaded into the system, which
still calls read_num!() 9 times as part of the loop,
then calls another function f() (which may or may
not have side effects), then calls read_num!() one
more time:

// v2
let guesses = []
for i in 0..9:

guesses.push(@read_num!())
f()
guesses.push(@read_num!())

Relative to v0, the sequence of effects of v1 is a subse-
quence that omits one effect, whereas the sequence of
effects of v2 is exactly the same as that of v0 if and
only if f() has no effects. In either case, the sequence
of v2 is an extension of v1.

Given these relationships, we can now start to describe
some of the design decisions that come up in the imple-
mentation of a live reload system and ask the following
question: When should the cache be invalidated over
the course of the above two reloads? In the case of
going from v0 to v1 the answer seems simple enough.
Throughout the whole execution of v1 the observable
effectful behavior is the same as for v0, so all of the
reads of v1 can come from the cache.

But what should happen to the last read of v0, which
is not being used by v1? Should this effect be kept
in the cache or dropped after the first reload? This
is relevant for deciding what happens in the case of
v2 and depending on the situation it could be quite
surprising if v2 suddenly returns the old cached read
from v0. This brings us to the first decision:

Decision 1: Are unused side effects dropped from the
cache after each reload?

Assuming that the last read of v0 is kept in the cache
even after the execution of v1, should this read be
evicted from the cache if f() has side effects? This
certainly makes sense if we view the introduction of
additional effects as part of f() as a divergence of
v0 and v2 in terms of their effect sequences. This is
because the effects introduced by f() might have an
impact on what the last read would be in the absence
of caching.

Assuming that the last read of v0 is dropped from
the cache after the execution of v1, should the first
9 reads of v2 return cached versions while the last
read bypasses the cache? This might make sense in a
case where the reads are mostly independent. However,
bypassing the cache only for the last effect could lead
to unexpected behavior from a user perspective if each
read successively manipulates some state outside of
the live system, for example by seeking further into a
file. In such a case it might be tempting to invalidate
previous effects retroactively, so that at the point of the
last read of v2 all of the reads of v2 are invalidated and
v2 is restarted and rerun from scratch. But if f() is
computationally expensive, this would mean that live
reloads could become noticeably less performant than
full system restarts. This is because a reload might
run the same code more than once. This brings us to
the second decision:

Decision 2: Are cached side effects dropped retroac-
tively?



We still need to consider the most fundamental de-
sign decision: When are effect sequences considered
divergent, so that any side effect occurring after the
point of divergence is not read from cache? In theory,
any cache invalidation strategy can guarantee replay
semantics, because no matter when and how the
cache is invalidated, a reload always replays the pure
computation from the start. In practice, however, we
might want to provide a stronger guarantee and thus
opt for the following invalidation strategy: Whenever
the effect sequence of a new version contains an effect
that did not occur at the same position in the effect
sequence of the previous version, the effect sequences
are considered to diverge and no further side effects
are read from the cache during the execution of the
new version.

This gets us closer to an actual implementation, but
is still not precise enough. We have not specified
which effects we consider to be part of a version’s
effect sequence: Do we consider only the cached effects
or all effects (including the ones without a caching
annotation)? This brings us to the third decision:

Decision 3: Are uncached side effects relevant for
deciding cache invalidation?

We note that different cache invalidation strategies
open up a large design space when it comes to replay
semantics. An analysis of further cases would be
necessary to discuss the different decisions in depth,
which is out of scope for the present paper.

Annotation Scoping
In all of the previous examples, effects are directly
annotated if they are to be cached. In real programs,
however, it will often be necessary to annotate whole
functions, which then make use of various effects in
their function body.

This can be solved by implementing the @ annotation
as a combinator that wraps arbitrary functions and
caches all effects that are used as part of the function,
as determined by the lexical scope of the function body.

Algorithm
Based on the above discussion, we now present an
algorithm for deciding whether to read a side effect
from cache or not. Regarding the three decisions
mentioned above, we proceed as follows:

1. Unused side effects are dropped from the cache
after each reload. This not only improves the

efficiency of the implementation by keeping the
cache smaller but also leads to a simpler mental
model for the user. Cached effects can never skip
a version, which means that only the previous
version needs to be considered.

2. Cached side effects are never dropped retroac-
tively. This guarantees that the live reload system
never runs the same version twice and thus
maintains the same performance characteristics
as a manual restart (apart from some caching
overhead). We note that it is possible to explic-
itly clear the current cache by loading a new
version that only differs from the previous one
by removing all caching annotations.

3. Uncached side effects are not relevant for deciding
cache invalidation. This makes the implementa-
tion simpler, because only cached effects need to
be considered. It leads to a simpler model where
the user only needs to reason about side effects
with explicit caching annotations when it comes
to reloads.

This leads to the following algorithm, which we present
in pseudocode using global variables. We assume that
the global variable cache starts out empty for the first
version and otherwise holds the effect sequence of the
previously loaded version.

Each element of the cache is a tuple of the
form (eff_signature, eff_result), for example
(print!("hello"), null) or (read_num!(), 5).

The cached_effect(i, eff) function is called once
for each effect of the new program version, with i
being the index of the effect in the sequence of cached
effects.

let diverged = false
let cache = []

function cached_effect(i, eff):
if i < cache.length and not diverged:

let (prev_eff, result) = cache[i]
if prev_eff == eff:

return result

diverged = true
let result = exec_eff(eff)
cache.truncate_at(i)
cache.push((eff, result))
return result



Limitations

While replay semantics provide strong guarantees for
live reloading, our approach has several important
limitations:

Language Requirements: The approach requires
strict separation between pure computation and side
effects, with syntactic marking of effects. This may not
be practical for existing languages.

Memory Overhead: Caching effect results indefi-
nitely can lead to unbounded memory growth for
programs with many unique side effects. Long-running
systems may require additional mechanisms for cache
management.

Performance Trade-offs: While avoiding full
restarts, the replay mechanism still re-executes all pure
computation from the beginning on each reload. For
computationally intensive programs, this may be slower
than traditional live reloading approaches.

Whole-Program Reloading: Our current formal-
ization only addresses reloading complete programs.
Extending to module-level or function-level reloading
introduces additional complexity around partial state
invalidation that we do not address.

Effect Ordering Sensitivity: Programs that rely
on precise timing or ordering of effects may behave
differently under replay semantics, particularly when
some effects are served from cache while others execute
fresh.

Despite these limitations, replay semantics offer a
principled foundation for live reloading that maintains
code as the single source of truth while avoiding the
pitfalls of stale state.

References

[1] E. Sandewall, “Programming in an interactive
environment: The ‘Lisp’ experience,” Comput-
ing Surveys, vol. 10, no. 1, pp. 35–71, 1978.

[2] A. Goldberg, Smalltalk-80: The interactive pro-
gramming environment. Reading, MA: Addison-
Wesley, 1984.

[3] J. Armstrong, “Making reliable distributed
systems in the presence of software errors,” PhD
thesis, Royal Institute of Technology (KTH),
Stockholm, Sweden, 2003. Available: http://erla
ng.org/download/armstrong_thesis_2003.pdf

[4] J. Armstrong, R. Virding, C. Wikström, and M.
Williams, Concurrent programming in Erlang,
2nd ed. Prentice Hall, 1996.

[5] Epic Games, “Using live coding to recompile
unreal engine applications at runtime.” Techni-
cal documentation, 2024. Available: https://dev.
epicgames.com/documentation/en-us/unreal-
engine/using-live-coding-to-recompile-unreal-
engine-applications-at-runtime

[6] Webpack Contributors, “Hot module replace-
ment.” Webpack Documentation, 2012. Avail-
able: https://webpack.js.org/guides/hot-
module-replacement/

[7] G. Stoyle, M. Hicks, G. Bierman, P. Sewell,
and I. Neamtiu, “Mutatis mutandis: Safe and
predictable dynamic software updating,” ACM
Transactions on Programming Languages and
Systems, vol. 29, no. 4, pp. 22:1–22:70, 2007,
doi: 10.1145/1255450.1255455.

[8] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol,
“Practical dynamic software updating for C,” in
Proceedings of the ACM SIGPLAN conference
on programming language design and implemen-
tation, in PLDI ’06. ACM, 2006, pp. 72–83. doi:
10.1145/1133981.1133991.

[9] H. Seifzadeh, M. Abolhasan, and J. Lipman, “A
survey of dynamic software updating,” Journal
of Software: Evolution and Process, vol. 25, no.
5, pp. 535–568, 2013.

[10] D. Gupta, P. Jalote, and G. Barua, “A formal
framework for on-line software version change,”
IEEE Transactions on Software Engineering, vol.
22, no. 2, pp. 120–131, 1996.

[11] G. Plotkin and M. Pretnar, “Handlers of al-
gebraic effects,” in Programming languages
and systems, in ESOP 2009, LNCS, vol. 5502.
Springer, 2009, pp. 80–94. doi: 10.1007/978-3-
642-00590-9_7.

http://erlang.org/download/armstrong_thesis_2003.pdf
http://erlang.org/download/armstrong_thesis_2003.pdf
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-live-coding-to-recompile-unreal-engine-applications-at-runtime
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-live-coding-to-recompile-unreal-engine-applications-at-runtime
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-live-coding-to-recompile-unreal-engine-applications-at-runtime
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-live-coding-to-recompile-unreal-engine-applications-at-runtime
https://webpack.js.org/guides/hot-module-replacement/
https://webpack.js.org/guides/hot-module-replacement/
https://doi.org/10.1145/1255450.1255455
https://doi.org/10.1145/1133981.1133991
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7

	Introduction
	Terminology
	Formal definition
	Implementation Strategy
	Language support
	Cache invalidation
	Annotation Scoping
	Algorithm

	Limitations
	References

