
Reasonable macros through explicit bindings
Frederic Kettelhoit
Recurse Center

fred@fkettelhoit.com

Abstract—We present macros that can be stati-
cally reasoned about without requiring a macro
expansion phase. This is achieved by distinguishing
variables that are being bound from variables that
are being used, in combination with explicit block
scopes. The resulting macro system enables local
reasoning, by supporting local evaluation without
requiring full knowledge of the macros in scope.

Introduction
Modern programming languages face a fundamental
tension between expressiveness and static analyzability.
While macro systems provide the flexibility to define
custom control structures and extend language syntax,
they often compromise the ability to reason about
programs statically. This paper introduces a novel ap-
proach to resolve this tension through explicit bindings,
a mechanism that enables macro-like expressiveness
while preserving static reasoning capabilities.

Motivation
The design of extensible programming languages has
long grappled with the challenge of allowing user-
defined constructs without sacrificing analyzability.
Consider the requirement that every function or control
structure in a language should be redefinable, including
fundamental operations such as variable assignment.
While a language may provide built-in syntax for
expressions like a = 5, the goal is to enable user-
defined functions to achieve equivalent functionality,
such as through a function let invoked as let(a,
5).

Traditional approaches to this problem have relied
on Lisp-style macro systems, dating back to Lisp 1.5
[1], [2]. In such systems, let can be implemented
as a macro that treats its first argument a as an
unevaluated symbol rather than a variable reference,
evaluates the second argument 5, and then invokes
the built-in assignment operation to bind the symbol
a to the value 5. However, this approach introduces
significant complications:

1. Complexity: Macro systems add substantial
complexity to the language, particularly regard-
ing macro hygiene: the challenge of preventing
unintended variable capture and ensuring that
macro expansions do not interfere with the lexical
scoping of the surrounding code [3].

2. Static analysis impediments: The presence of
macros fundamentally undermines static reason-
ing about program behavior. Given an expression
such as foo(2 + 2), one cannot determine
whether this can be simplified to foo(4) without
first resolving whether foo is a macro. Macros
can observe and act upon syntactic differences
between expressions that are semantically equiv-
alent, necessitating macro resolution before any
program optimization or analysis can occur.

Contribution

This work proposes an alternative approach that
achieves most of the expressiveness of traditional macro
systems while maintaining the ability to perform static
analysis. Our key insight is to explicitly distinguish
between variables that are being bound (newly in-
troduced into scope) and variables that are being
used (referenced from existing scope). This distinction,
combined with explicit block scoping, enables what
we term reasonable macros: extensible language
constructs that can be analyzed statically without
prior macro expansion.

The fundamental guiding principle of our design is:

Every construct in the language can be redefined without
privileged language constructs, while the scope and
binding structure of variables remains immediately
apparent from the source code alone, without requiring
evaluation of any function or macro.

Technical approach

Our approach bridges the gap between fexprs and
traditional macros through selective evaluation based

on syntactic markers. The core insight is that eval-
uation behavior can be determined purely syntacti-
cally: expressions containing explicit binding markers
remain unevaluated for structural manipulation, while
unmarked expressions are evaluated normally. This
guarantees that macros can observe syntactic differ-
ences only in the presence of explicit binding markers,
in all other cases semantically equivalent expressions
can be freely substituted for each other, ensuring that
referential transparency is preserved.

Explicit bindings
We introduce a syntactic distinction that governs
evaluation behavior:

• Variable Usage: Variables resolved from existing
scope use standard notation (e.g., x)

• Variable Binding: Variables that introduce fresh
bindings are prefixed with a marker (e.g., :x)

This marking scheme enables what we term reasonable
macros: functions that can access syntactic structure
when needed while preserving static reasoning for
unmarked expressions:

// no bindings, equivalent to f(4)
f(2 + 2)

// :x remains unevaluated
f(:x)

// :x unevaluated, y + z evaluated
f(:x, y + z)

The presence of binding markers provides a syntactic
guarantee about evaluation behavior, eliminating the
need for runtime type checking (as in fexprs) or
complete macro expansion (as in traditional macro
systems).

Explicit block scope
To support static reasoning while allowing user-defined
binding constructs, variable scope must be tracked
syntactically. We employ explicit block syntax { ...
} with the innovation that binding declarations are
separated from their scope blocks. Such a block is
equivalent to a lambda abstraction that does not spec-
ify its bound variables explicitly but rather determines
them based on the explicit bindings that appear to its
left in the abstract syntax tree. This separation enables
precise control over variable binding while maintaining
syntactic clarity about scope boundaries.

As a more concrete example, let us consider the
following function call:

foo(:x, y, { bar(x) })
// | ________/
// | scope of x
// |
// '-- binding of x

Both the scope and the origin of the variable x in
the block { bar(x) } are determined syntactically,
without knowing the definition of foo (and thus
without knowing whether foo is a macro or a regular
function). Since the explicit binding :x appears to the
left of the block { bar(x) }, the block is desugared
to a lambda abstraction with the bound variable x.

More precisely, the association between explicit bind-
ings and blocks works as follows: A function call
f(f1, . . . , fm−1, {body}, fm+1, . . . , fn) where {body} is
a block argument at position m desugars the block
{body} to a lambda abstraction that binds all explicit
bindings occurring in the arguments f0, . . . , fm−1 that
have not been consumed by other blocks appearing
earlier in those arguments. The block {body} is
transformed into λx1 . . . xk.body where x1, . . . , xk are
the unconsumed explicit bindings from the preceding
arguments, and these bindings are marked as consumed
for subsequent blocks in the same function call or
enclosing expressions.

Nested blocks
Sequential binding operations using the explicit form
can lead to deeply nested structures that impair
readability. Consider a series of variable bindings:

let(:a, x, {
let(:b, y, {

let(:c, z, {
f(a, b, c)

})
})

})

While this nesting clearly shows the scope structure,
it becomes unwieldy for longer sequences. To address
this, we introduce syntactic sugar that allows blocks
to consume bindings by enclosing them:

{
let(:x, y),
f(x)

}

This block-enclosed syntax is equivalent to the more ex-
plicit form let(:x, y, { f(x) }). The desugaring
process recognizes that the let construct within the
block contains an explicit binding :x and is followed by
another element in the enclosing block, so the binding
is automatically consumed by the enclosing block. This
transformation preserves the static analyzability of the
binding structure while providing more natural syntax
for common patterns.

The approach scales naturally to multiple nested
bindings:

{
let(:a, x),
let(:b, y),
f(a, b)

}

This desugars to let(:a, x, { let(:b, y, {
f(a, b) }) }), creating the expected nested scope
structure. Each binding construct that contains explicit
bindings automatically receives the remainder of the
block as its block argument.

To handle expressions that do not introduce bindings
(such as side effects), the system treats non-binding
block elements differently. When a block element
contains no explicit bindings that could be consumed
by the enclosing block, the element is evaluated as an
argument to an anonymous function that returns the
rest of the block:

{
let(:x, Foo),
print("..."),
use_x(x)

}

This desugars to an expression where the print call
executes its side effect before the remainder of the
block continues with access to the binding x. This
mechanism allows natural mixing of binding constructs
and effectful computations while maintaining the clear
separation between binding and usage.

The nested block syntax preserves all the static reason-
ing properties of the explicit form. Variable bindings
remain syntactically apparent, scope boundaries are
clearly delineated, and the desugaring process produces
standard lambda calculus constructs that can be
analyzed and optimized using conventional techniques.

Macro definitions

To complete the macro system, we need mechanisms for
defining constructs that can observe and manipulate
the syntactic structure of explicitly marked bindings.

Macro definitions are distinguished from regular func-
tion definitions through a syntactic marker. A macro
definition uses the # prefix (e.g., #f = ...), while
regular function definitions use standard syntax (e.g.,
:f = ...). The environment tracks both the names
in scope and their classification as either macros or
regular values. This distinction matters only during
the desugaring phase when translating to call-by-value
lambda calculus; it does not impact the evaluation
rules, which can continue to use standard lambda
calculus environments.

When a macro is applied to arguments, its arguments
undergo a static transformation that makes syntactic
structure observable. Arguments are wrapped in data
structures that preserve the distinction between evalu-
ated expressions and syntactic elements that contain
explicit bindings. This transformation occurs during
the desugaring phase, before any evaluation takes place,
and relies only on syntactic information.

x → Value(x) (1)
: x → Binding("x") (2)

{. . .} → Block(. . .) (3)
f(x, y) → Value(f(x, y)) (4)

f(x, : y) → Call(Value(f), [Value(x), Binding("y")]) (5)
: f(x, y) → Call(Binding("f"), [Value(x), Value(y)]) (6)

In the case of f(x, :y), the presence of the explicit
binding :y prevents the entire expression from being
evaluated. Instead, it is preserved as a Call structure
that contains both evaluated components (Value(x))
and syntactic components (Binding("y")). This se-
lective preservation allows macros to observe syntactic
structure precisely where it is explicitly marked, while
maintaining referential transparency for unmarked
subexpressions.

More formally, when a macro f is applied to argu-
ments a1, a2, . . . , an, each argument ai is transformed
according to the function wrap(ai) defined as:

wrap(a) =



Binding(name)
if a is a binding expression : name

Block(content)
if a is a block expression {. . .}

Call(wrap(f), [wrap(a1), . . . ,wrap(an)])
if a = f(a1, . . . , an)
and wrap(f) 6= Value(. . .)

Call(wrap(f), [wrap(a1), . . . ,wrap(an)])
if a = f(a1, . . . , an)
and f is not a macro
and any wrap(ai) 6= Value(. . .)

Value(a)
otherwise

Multi-level bindings
The basic explicit binding mechanism supports bind-
ings that are active in the immediately following scope,
but many programming constructs require bindings
that persist across multiple scope levels. A prominent
example is the definition of a recursive function, where
the function being defined must be available both
within its own definition (for recursive calls) and in
the scope following the definition (for external use).

Multi-level bindings extend the explicit binding syntax
to support this pattern through repeated markers. A
binding ::x remains active for the next two scopes,
:::x for three scopes, and so on.

Consider the definition of a recursive function:

{
::factorial(:n) = {
if(n == 0, 1, n * factorial(n - 1))

},
factorial(5)

}

The ::factorial binding with two markers indicates
that the function will be available both within its own
definition (enabling the recursive call factorial(n
- 1)) and in the subsequent scope (enabling the call
factorial(5)).

The multi-level binding mechanism preserves static
analyzability by making the scope lifetime explicit in
the syntax. A static analyzer can determine the avail-
ability of any identifier by counting binding markers
and tracking scope nesting levels, without requiring
knowledge of the specific constructs being used.

Related work
The challenge of balancing expressiveness with static
analyzability in metaprogramming has been explored
through several distinct approaches, each with particu-
lar trade-offs between power and reasoning capabilities.

Fexprs and operatives
An alternative to macro-based metaprogramming
emerged through the development of fexprs: functions
that receive their arguments unevaluated and can
selectively evaluate them in controlled environments
[4]. This approach was later refined in Shutt’s Ker-
nel language, which distinguishes between operatives
(functions that do not evaluate their arguments by
default) and applicatives (functions that do evaluate
their arguments) [5].

The fundamental insight of fexprs is that operatives rep-
resent a more primitive abstraction than applicatives,
since any applicative can be constructed by wrapping
an operative with automatic argument evaluation.
However, this generality comes at the cost of static
reasoning: because operatives can selectively evaluate
or ignore their arguments, expressions like f(2 + 2)
cannot be optimized to f(4) without first determining
whether f is an operative or applicative.

Mitchell [6] and Wand [7] identified this limitation
in their foundational work on fexprs, noting that
the ability to observe syntactic structure necessarily
impedes equational reasoning. While fexprs provide se-
mantic abstraction without requiring phase separation
between compile-time and run-time, they sacrifice the
compiler’s ability to perform optimizations based on
expression equivalence.

Our approach represents a deliberate restriction of
fexpr-style operatives, trading some expressive power
for static analyzability. Unlike Kernel’s operatives,
which can dynamically choose whether to evaluate
any argument, our approach determines evaluation
behavior syntactically through binding markers. This
restriction enables translation to standard call-by-value
lambda calculus while preserving the ability to define
custom binding constructs.

Restricted metaprogramming approaches
Several researchers have explored restricted forms of
metaprogramming that preserve some static reason-
ing capabilities. These approaches generally involve
constraining when and how syntactic structure can be

observed, though they differ in their specific mecha-
nisms and the extent of their restrictions.

The approach presented in this paper builds upon
insights from both macro systems and fexprs while
introducing novel syntactic constraints. By making
variable bindings explicit through syntactic markers,
we enable selective access to syntactic structure: argu-
ments containing explicit bindings remain unevaluated
for structural manipulation, while other arguments are
evaluated normally. This provides a middle ground
between the full power of fexprs and the static analyz-
ability of conventional function calls.

Comparison with existing approaches
Our explicit binding approach differs from traditional
macros in that it eliminates the need for complete
macro expansion before optimization can occur. Unlike
fexprs, it provides syntactic guarantees about when
evaluation occurs, enabling static reasoning about
expression equivalence. The key innovation is that
evaluation behavior is determined syntactically by the
presence of binding markers rather than by runtime
type checking or compile-time macro resolution.

References

[1] T. P. Hart, “MACRO definitions for LISP,” AI
Memos, 1963.

[2] G. L. Steele and R. P. Gabriel, “The evolution of
lisp,” in History of programming languages—II,
1996, pp. 233–330.

[3] E. Kohlbecker, D. P. Friedman, M. Felleisen,
and B. Duba, “Hygienic macro expansion,” in
Proceedings of the 1986 ACM conference on
LISP and functional programming, 1986, pp.
151–161.

[4] K. M. Pitman, “Special forms in lisp,” in
Proceedings of the 1980 ACM conference on
LISP and functional programming, 1980, pp.
179–187.

[5] J. N. Shutt, PhD thesis, PhD thesis, Worcester
Polytechnic Institute, September 2010, 2010.

[6] J. C. Mitchell, “On abstraction and the expres-
sive power of programming languages,” Science
of Computer Programming, vol. 21, no. 2, pp.
141–163, 1993.

[7] M. Wand, “The theory of fexprs is trivial,” Lisp
and Symbolic Computation, vol. 10, no. 3, pp.
189–199, 1998.

	Introduction
	Motivation
	Contribution
	Technical approach
	Explicit bindings
	Explicit block scope
	Nested blocks
	Macro definitions
	Multi-level bindings

	Related work
	Fexprs and operatives
	Restricted metaprogramming approaches
	Comparison with existing approaches

	References

