
Reasonable macros through explicit bindings
Frederic Kettelhoit
Recurse Center

fred@fkettelhoit.com

Abstract—We present macros that can be stati-
cally reasoned about without requiring a macro
expansion phase. This is achieved by distinguishing
variables that are being bound from variables that
are being used, in combination with explicit block
scopes. The resulting macro system enables local
reasoning, by supporting local evaluation without
requiring full knowledge of the macros in scope.

Introduction
Modern programming languages face a fundamental
tension between expressiveness and static analyzability.
While macro systems provide the flexibility to define
custom control structures and extend language syntax,
they often compromise the ability to reason about
programs statically. This paper introduces a novel ap-
proach to resolve this tension through explicit bindings,
a mechanism that enables macro-like expressiveness
while preserving static reasoning capabilities and
maintaining compatibility with conventional variable
scoping patterns found in mainstream programming
languages.

Motivation
The design of extensible programming languages has
long grappled with the challenge of allowing user-
defined constructs without sacrificing analyzability.
Consider the requirement that every function or control
structure in a language should be redefinable, including
fundamental operations such as variable assignment.
While a language may provide built-in syntax for
expressions like a = 5, the goal is to enable user-
defined functions to achieve equivalent functionality,
such as through a function let invoked as let(a,

5).

Traditional approaches to this problem have relied
on Lisp-style macro systems, dating back to Lisp 1.5
[1], [2]. In such systems, let can be implemented
as a macro that treats its first argument a as an
unevaluated symbol rather than a variable reference,
evaluates the second argument 5, and then invokes

the built-in assignment operation to bind the symbol
a to the value 5. However, this approach introduces
significant complications:

1. Complexity: Macro systems add substantial
complexity to the language, particularly regard-
ing macro hygiene: the challenge of preventing
unintended variable capture and ensuring that
macro expansions do not interfere with the lexical
scoping of the surrounding code [3].

2. Static analysis impediments: The presence of
macros fundamentally undermines static reason-
ing about program behavior. Given an expression
such as foo(2 + 2), one cannot determine
whether this can be simplified to foo(4) without
first resolving whether foo is a macro. Macros
can observe and act upon syntactic differences
between expressions that are semantically equiv-
alent, necessitating macro resolution before any
program optimization or analysis can occur.

Contribution
This work proposes an alternative approach that
achieves most of the expressiveness of traditional macro
systems while maintaining the ability to perform static
analysis and preserving familiar variable scoping seman-
tics. Our key insight is to explicitly distinguish between
variables that are being bound (newly introduced into
scope) and variables that are being used (referenced
from existing scope), using syntactic markers that align
closely with how variable scopes work in mainstream
programming languages.

This distinction, combined with explicit block scoping,
enables what we term reasonable macros: extensible
language constructs that can be analyzed statically
without prior macro expansion. The fundamental
guiding principle of our design is:

Every construct in the language can be redefined without
privileged language constructs, while the scope and
binding structure of variables remains immediately



apparent from the source code alone, without requiring
evaluation of any function or macro.

Intuition

Our approach bridges the gap between fexprs and
traditional macros through selective evaluation based
on syntactic markers. The core insight is that eval-
uation behavior can be determined purely syntacti-
cally: expressions containing explicit binding markers
remain unevaluated for structural manipulation, while
unmarked expressions are evaluated normally. This
guarantees that macros can observe syntactic differ-
ences only in the presence of explicit binding markers.
In all other cases semantically equivalent expressions
can be freely substituted for each other, ensuring that
referential transparency is preserved.

Explicit bindings
We introduce a syntactic distinction that governs
evaluation behavior:

• Variable Usage: Variables that are resolved use
standard notation (e.g., x)

• Variable Binding: Variables that introduce fresh
bindings are marked syntactically (e.g., :x)

This marking scheme enables what we term reasonable
macros: functions that can access syntactic structure
when needed while preserving static reasoning for
unmarked expressions:

Consider destructuring assignment as our running
example:

// assuming point is in scope
(:x, :y) = point // x and y are bound
use_point(x, y) // x and y are used

Here, the assignment operator = can be implemented
as a user-defined infix macro that observes the binding
structure (:x, :y) while evaluating point normally.
The scope of the newly bound variables x and y extends
through the remainder of the enclosing block.

The syntactic difference between bound and used vari-
ables makes it immediately clear which subexpressions
can be evaluated, even in the presence of macros.
The presence of binding markers provides a syntactic
guarantee about evaluation behavior, eliminating the
need for runtime evaluation (as in fexprs) or complete
macro expansion (as in traditional macro systems).

Without knowing how the assignment macro = is
defined, it is immediately obvious which argument
(sub-)expressions are evaluated:

// x and y are bound
(:x, :y) = point

// x is bound, z is resolved
(:x, z) = point

// x is bound, 2 + 2 is evaluated
(:x, 2 + 2) = point

// x is bound
(:x, :x) = point

If = implements standard pattern matching with
unification (and throws an exception if the pattern
on the left does not match the value on the right), the
first example would be an irrefutable match, whereas
the second and third examples would match only if the
second element of the pair has a particular value, while
the last example would only match if both elements
can be unified.

Crucially, however, it is safe to evaluate 2 + 2 even
if = is implemented differently and e.g., does not
implement pattern matching at all. In contrast to
traditional macro systems, the syntactic distinction
between bound and used variables guarantees that
evaluation behavior remains statically tractable and
exposes only explicitly annotated expressions as syn-
tactically observable macro arguments.

Explicit scope
It is common for binding constructs in traditional
languages to bind variables not just in the enclosing
scope, but also in explicit block scopes that are used as
part of a binding construct. Examples are constructs
for declaring anonymous functions, which bind func-
tion arguments in the body of the function, as well
as pattern matching constructs, which bind pattern
variables in the body of a match clause.

We will mark explicit block scope syntactically by
enclosing a sequence of expressions in {...}, with
the innovation that binding declarations are separated
from their scope blocks. A {...} block is equivalent
to a lambda abstraction that does not specify its
bound variables explicitly but rather determines them
based on the explicit bindings that appear to its left
in the abstract syntax tree. This separation enables



precise control over variable binding while maintaining
syntactic clarity about scope boundaries.

Whenever a function is called with an explicit block
as one of its arguments, the evaluation behavior of the
arguments preceding the block is defined as follows:

• Variable Binding: Variables that introduce fresh
bindings use standard notation (e.g., x)

• Variable Usage: Variables that are resolved are
marked syntactically (e.g., ˆx)

This marking scheme is thus dual to the marking
scheme used for the enclosing scope: In the enclosing
scope, bound variables are explicitly marked, whereas
for explicitly marked block scopes, used variables are
explicitly marked.

Consider the pattern matching operator -> as an
example involving explicit block scope:

// assuming point and z are in scope
match (point) [

// x bound, z used
(x, ˆz) -> {

f(x)

}

]

As in the case of explicit bindings used within the
enclosing scope, it is immediately obvious which
argument (sub-)expressions of -> are evaluated:

match (point) [

(x, x) -> {

// x is bound
}

(x, ˆz) -> {

// x is bound, z is resolved
}

(x, y) -> {

// x and y are bound
}

]

Combining explicit and implicit bindings
Some programming constructs require bindings that
are bound both in the enclosing scope and inside of
an explicit block argument. A prominent example
is the definition of a recursive function, where the
function being defined must be available both within
its own definition (for recursive calls) and in the scope
following the definition (for external use). This is easily

supported by combining explicit bindings and block
scope arguments.

Consider the definition and application of a recursive
function:

:factorial(n) = {

if (n == 0) {

1

} else {

n * factorial(n - 1)

}

}

factorial(5)

The explicit :factorial binding indicates that the
variable will be bound both within its own definition
(since it is followed by the explicit block argument of =,
enabling the recursive call factorial(n - 1)) and
in the enclosing scope (since it is explicitly marked,
enabling the call factorial(5)).

Macro resolution through usage

Unlike traditional macro systems that require explicit
macro definitions, our approach determines whether
a function should be treated as a macro based on
how it is used. This usage-based resolution eliminates
the need for separate macro definition syntax while
preserving static analyzability.

A function call is treated as a macro (with arguments
wrapped in syntactic annotations) if any of the follow-
ing conditions hold:

1. Explicit bindings: The function is called with
explicit binding arguments that can be used in
the enclosing scope: f(:x, y) or :result =

f(args)

2. Block arguments: The function is called with
block arguments: f(args, {...})

When a function is identified as a macro call, its
arguments undergo a static transformation that pre-
serves syntactic structure where needed. We first give
an informal intuition by listing several examples and
formalize the algorithm in the next section. Syntactic
annotations add a runtime-observable tag to their
wrapped data and are written in smallcaps:

For the enclosing scope:



x → Val(x) (1)
: x → Bind("x") (2)

{. . .} → Block(λ . . .) (3)
f(x, y) → Val(f(x, y)) (4)
f(: x, y) → Call(Val(f), [Bind("x"),Val(y)]) (5)

For explicit scope arguments:

∧x → Val(x) (6)
x → Bind("x") (7)

{. . .} → Block(λ . . .) (8)
∧f(∧x,∧ y) → Val(f(x, y)) (9)

∧f(x,∧ y) → Call(Val(f), [Bind("x"),Val(y)]) (10)

This selective preservation allows macros to observe
syntactic structure precisely where it is explicitly
marked, while maintaining referential transparency
for unmarked subexpressions.

Lambda Transformation
We will now formalize the macro system by presenting
an algorithm that translates bindings and blocks to
call-by-value lambda calculus. The algorithm consists
of three individual translations:

1. A translation of macro arguments into arguments
wrapped with syntactic annotations.

2. A translation of a sequence of expressions that
might include explicit bindings inside of an
enclosing scope into nested lambda abstractions.

3. A translation of function calls with implicit bind-
ings and explicit block arguments into lambda
abstractions.

Since the last two translations depend on the first
translation, we will begin by formalizing the notion
of wrapping macro arguments with runtime tags that
was outlined informally in the last section.

Macro argument wrapping
To be able to use the same algorithm for both enclosing
scopes and explicit block arguments, we abstract
over the specific syntax by distinguishing binding
names from other names and define binding names
as an explicit binding in the context of an enclosing

scope or an implicit binding in the context of explicit
block arguments, which captures the duality of these
contexts.

When a macro f is applied to arguments a1, a2, . . . , an,
each argument ai is transformed according to the
function wrap(ai) defined as:

wrap(a) =



Bind(name)
if a is a binding name

Block(content)
if a is a block expression {. . .}

Call(wrap(f), [wrap(a1), . . . ,wrap(an)])
if a = f(a1, . . . , an)
and wrap(f) 6= Val(. . .)

Call(wrap(f), [wrap(a1), . . . ,wrap(an)])
if a = f(a1, . . . , an)
and f is not a macro
and any wrap(ai) 6= Val(. . .)

Val(a)
otherwise

We consider built-in data structures such as tuples as
function calls that build up these data structures, so
that a tuple such as (x, y) can be treated as the
call tuple(x, y) for the purposes of macro argument
wrapping.

Notice that our algorithm supports bindings being
used in the position of a function that is applied to
arguments. This is useful if the goal is to expose and
match against the structure of nested data structures,
similar to the polymorphism supported in pattern
calculus [4].

Another possibility would be to disallow bindings to
be used as functions in the context of an enclosing
scope and to treat a function without a ˆ marker as
a value instead of a binding name in the context of
block arguments. This would lead to fewer annotations
at the price of breaking the duality between the two
contexts.

Enclosing scope
For enclosing scope contexts, expressions containing
explicit bindings are converted to lambda abstractions
that bind variables for the remainder of the scope.

(:x, :y) = point

use_point(x, y)



With WRAP as the translation described in the last
section and x => y as a lambda abstraction with
argument x and body y, the above desugars to:

(=)(

WRAP((:x, :y)),

point,

x => y => use_point(x, y)

)

If an expression does not contain any explicit bindings,
it is treated as a side effect and passed as an argument
to a lambda abstraction that ignores its argument,
which effectively sequences the side effects in the
expected order:

f(x, y)

g(z)

Desugars to:

(_ => g(z))(f(x, y))

The translation of a whole block is then a fold over
the sequence of expressions, starting with the last
expression of the block as the initial element:

(:x, :y) = point

f(x, y)

use_point(x, y)

Desugars to:

(=)(

WRAP((:x, :y)),

point,

x => y => ((_ => g(z))(f(x, y)))

)

More formally, let E = [e1, e2, . . . , en] be a sequence of
expressions within an enclosing scope. The translation
T (E) is defined recursively using a right fold operation:

T ([e]) = e (base case)

T ([e1, e2, . . . , en]) =


M(e1, T ([e2, . . . , en]))
if e1 contains expl. bindings

(λ_.T ([e2, . . . , en]))(e1)
otherwise

where M(e, cont) represents the macro transformation
of expression e with continuation cont, and is defined
as:

M(f(a1, . . . , ak), cont) =

f(wrap(a1), . . . ,wrap(ak), λx1 . . . xm.cont)

where x1, . . . , xm are the variables bound by the
explicit bindings in a1, . . . , ak.

For expressions without function calls but containing
explicit bindings (such as standalone binding decla-
rations), the transformation follows the same pattern
by treating the binding construct as a macro that
introduces variables into the continuation.

Notice that as a consequence of using enclosing blocks
as the mechanism for both binding variables and
sequencing effects, it is not possible to use a macro
without binding any variables. For example, it is not
possible to use destructuring assignment to match the
value x against the value y by writing it as x = y,
because it would be interpreted as a side effect due to
its lack of explicit bindings. We consider this acceptable
but note that explicit syntax could be introduced to
distinguish these two cases.

Block arguments
For block argument contexts, the lambda translation
is determined by the implicit bindings that precede
the block argument in the abstract syntax tree.

(x, y) -> { use_point(x, y) }

Desugars to:

(->)(

WRAP((x, y)),

x => y => use_point(x, y)

)

More precisely, implicit bindings and explicit uses
in the presence of block scope arguments are trans-
lated to lambda terms as follows: A function call
f(a1, . . . , am−1, {body}, am+1, . . . , an) where {body}
is a block argument at position m is transformed as:

f(wrap(a1), . . . ,wrap(am−1), λx1 . . . xk.body,

wrap(am+1), . . . ,wrap(an))

where x1, . . . , xk are the implicit bindings extracted
from the preceding arguments a1, . . . , am−1.



The implicit bindings are determined by the function
bind(a) defined as:

bind(a) =


{a} if a is a binding name⋃n

i=1 bind(ai) if a = g(a1, . . . , an)
∅ otherwise

The order of the lambda parameters x1, . . . , xk follows
the left-to-right traversal order of their first occurrence
in the abstract syntax tree of the preceding arguments.

For multiple block arguments, each block receives the
bindings from the unconsumed arguments that precede
it:

f(a1, . . . , ai, {body1}, ai+1, . . . , aj , {body2}, . . .)

becomes:

f(wrap(a1), . . . ,wrap(ai), λ~x.body1,

wrap(ai+1), . . . ,wrap(aj), λ~y.body2, . . .)

where ~x represents the bindings from a1, . . . , ai and ~y
represents the bindings from ai+1, . . . , aj .

Related work
The challenge of balancing expressiveness with static
analyzability in metaprogramming has been explored
through several distinct approaches, each with particu-
lar trade-offs between power and reasoning capabilities.

Fexprs and operatives
An alternative to macro-based metaprogramming
emerged through the development of fexprs: functions
that receive their arguments unevaluated and can
selectively evaluate them in controlled environments
[5]. This approach was later refined in Shutt’s Ker-
nel language, which distinguishes between operatives
(functions that do not evaluate their arguments by
default) and applicatives (functions that do evaluate
their arguments) [6].

The fundamental insight of fexprs is that operatives rep-
resent a more primitive abstraction than applicatives,
since any applicative can be constructed by wrapping
an operative with automatic argument evaluation.
However, this generality comes at the cost of static
reasoning: because operatives can selectively evaluate

or ignore their arguments, expressions like f(2 + 2)

cannot be optimized to f(4) without first determining
whether f is an operative or applicative.

Mitchell [7] and Wand [8] identified this limitation
in their foundational work on fexprs, noting that
the ability to observe syntactic structure necessarily
impedes equational reasoning. While fexprs provide se-
mantic abstraction without requiring phase separation
between compile-time and run-time, they sacrifice the
compiler’s ability to perform optimizations based on
expression equivalence.

Our approach represents a deliberate restriction of
fexpr-style operatives, trading some expressive power
for static analyzability. Unlike Kernel’s operatives,
which can dynamically choose whether to evaluate
any argument, our approach determines evaluation
behavior syntactically through binding markers. This
restriction enables translation to standard call-by-value
lambda calculus while preserving the ability to define
custom binding constructs.

Restricted metaprogramming approaches
Several researchers have explored restricted forms of
metaprogramming that preserve some static reason-
ing capabilities. These approaches generally involve
constraining when and how syntactic structure can be
observed, though they differ in their specific mecha-
nisms and the extent of their restrictions.

The approach presented in this paper builds upon
insights from both macro systems and fexprs while
introducing novel syntactic constraints. By making
variable bindings explicit through syntactic markers,
we enable selective access to syntactic structure: argu-
ments containing explicit bindings remain unevaluated
for structural manipulation, while other arguments are
evaluated normally. This provides a middle ground
between the full power of fexprs and the static analyz-
ability of conventional function calls.

Comparison with existing approaches
Our explicit binding approach differs from traditional
macros in that it eliminates the need for complete
macro expansion before optimization can occur. Unlike
fexprs, it provides syntactic guarantees about when
evaluation occurs, enabling static reasoning about
expression equivalence. The key innovation is that
evaluation behavior is determined syntactically by the
presence of binding markers rather than by runtime
type checking or compile-time macro resolution.



References

[1] T. P. Hart, “MACRO definitions for LISP,” AI
Memos, 1963.

[2] G. L. Steele and R. P. Gabriel, “The evolution of
lisp,” in History of programming languages—II,
1996, pp. 233–330.

[3] E. Kohlbecker, D. P. Friedman, M. Felleisen,
and B. Duba, “Hygienic macro expansion,” in
Proceedings of the 1986 ACM conference on
LISP and functional programming, 1986, pp.
151–161.

[4] C. B. Jay, “The pattern calculus,” ACM Trans-
actions on Programming Languages and Systems
(TOPLAS), vol. 26, no. 6, pp. 911–937, 2004.

[5] K. M. Pitman, “Special forms in lisp,” in
Proceedings of the 1980 ACM conference on
LISP and functional programming, 1980, pp.
179–187.

[6] J. N. Shutt, PhD thesis, PhD thesis, Worcester
Polytechnic Institute, September 2010, 2010.

[7] J. C. Mitchell, “On abstraction and the expres-
sive power of programming languages,” Science
of Computer Programming, vol. 21, no. 2, pp.
141–163, 1993.

[8] M. Wand, “The theory of fexprs is trivial,” Lisp
and Symbolic Computation, vol. 10, no. 3, pp.
189–199, 1998.


	Introduction
	Motivation
	Contribution
	Intuition
	Explicit bindings
	Explicit scope
	Combining explicit and implicit bindings
	Macro resolution through usage

	Lambda Transformation
	Macro argument wrapping
	Enclosing scope
	Block arguments

	Related work
	Fexprs and operatives
	Restricted metaprogramming approaches
	Comparison with existing approaches

	References

